On {$H\sp \infty$} well-posed Cauchy problems for some weakly hyperbolic pseudo-differential equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On Cauchy problems for fuzzy differential equations
Existence and uniqueness theorems are proved for Cauchy problems of second-order fuzzy differential equations. 1. Introduction. In 1972, Chang and Zadeh [2] first introduced the concept of fuzzy derivative, followed up ten years later by Dubois and Prade [5], who used the extension principle in their approach. In the mean time, Puri and Ralescu [12] used the notion of H-differentiability to ext...
متن کاملLocal and global solutions of well-posed integrated Cauchy problems
In this paper we study the local well-posed integrated Cauchy problem, v′(t) = Av(t) + tα Γ(α + 1) x, v(0) = 0, t ∈ [0, κ), with κ > 0, α ≥ 0, and x ∈ X where X is a Banach space and A a closed operator on X. We extend solutions increasing the regularity in α. The global case (κ = ∞) is also treated in detail. Growths of solutions are given in both cases.
متن کاملUniqueness in Cauchy Problems for Hyperbolic Differential Operators
In this paper we prove a unique continuation theorem for second order strictly hyperbolic differential operators. Results also hold for higher order operators if the hyperbolic cones are strictly convex. These results are proved via certain Carleman inequalities. Unlike [6], the paramétrées involved only have real phase functions, but they also have Gaussian factors. We estimate the parametrice...
متن کاملWell Posed, Stable and Weakly Coupled Fluid Structure Interaction Problems
We investigate problems of fluid structure interaction type and aim for a formulation that leads to a well posed problem and a stable numerical procedure. Our first objective is to investigate if the generally accepted formulations of the FSI problems are the only possible ones. Our second objective is to derive a numerical coupling which is truly stable. To accomplish that we will use a weak c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences
سال: 1994
ISSN: 0034-5318
DOI: 10.2977/prims/1195165582